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SMOOTHING 3-D DATA FOR TORPEDO PATHS

B THE GENERAL PROBLEM
A. Data

Data in the form of ordered quadruplets (ti, Xis ¥yo and zi) are
available from 3-D files on torpedo and target paths. The times L, are suffic-

iently accurate so that they can be assumed to be without errors. The spatial co-
ordinates X Yoo and z2.5 however, are not only subject to measurement errors,
but also may contain erratic measurements or have measurements missing for some

of the equally spaced time intervals.

B. Desired Cutput

Information to be extracted from this data can be obtained either as:
(1) smoothed information as a function of time {parametric form), or

(2) smoothed information at a particular sequence of times which can te

specified.
A comparison of computational requirements of the two procedures will involve the length
of intervals used in smoothing and the number of times in the sequence of times of
interest. Both procedures involve the same smocothing techniques.

The information to be extracted from the 3-D data includes:

(1) smoothed position coordinates

(a) as functions of time (i.e., x=fx(t), y=fy(t), zztz(t))

{b) at specified times t, (i.e., x(ti), y(ti), z(ti)),




(3) velocity component estimates
(a) as functions of time (i.e., Vx(t), Vy(t), Vz(t))
(b) at specified times t, (i.e., Vx(ti)’ Vy(ti), Vz(ti)),
(4) relative torpedo and target geometry in vicinity of intercept.
ik Data Sample

The path of the torpedo involves maneuvers so that segments must be
selected for applications of the smoothing technique. The lengths of the segments, and
hence the number of possible data points, is open to selection. Curves to be used to fit
the data will orimarily be polynomials. Longer path segments will generally require higher
order polynomials and be more difficult to fit with acceptably small residuals. On the
other hand, short intervals contain fewer data pcints and can limit capability for reducing
prediction errors—the trade-off must be resolved by considering potential paths, and
measurement errors. Some indication will be presented in subseguent sections of this
report where data for a specific torpedo path is analyzed. Initially, two sample sizes

(n=11 and n=21) are considered.

One of the questionable features for small sample sizes is possible further

reduction by deletion of data points which appears inconsistent with the remaining data.
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II. DATA SMOOTHING

A. Methodology

The data smoothing considered in this report is limited to the method of
least squares. Other methods such as Kalman filtering would be appropriate for real time
data smoothing where interest is centered on the next data point following the data used
in the smoothing, but the current status of the method is not appropriate for
postexperimental application where times within the data sample are of interest.

The data smoothing techniques currently used at IVPS involve the least

squares method with the following equations:
(1) x(t)=a + bt (linear)
(2) x(t)=a + bt + ot (quadratie, parabolic)
(3) x(t)=a + bln{t) (logarithmic).
This report concentrates on the addition of higher order polynomials, in particular:
(4) x(t)=a_ +a,t+a t.%a ¢3 (cubice)
o 1 3 g
(5) X(t)=a_+a,t+a t2+ a5 +a,tt (quartic)
: 0 1 2 3 i :

The linear least squares technique is described in Appendix A. The sum of
squares of the residuals

O
1]

— MZ
[¢¢]
o
1}

-~ M3

<Xi —/2?(ti)> :

provides a basis for selection of the particular equation to be used in fitting a particular
set of data. The statistic

2 ,
Se = D/ (n-k), !




where n is the number of points in the sample and k is the number of parameters in the

equation, provides an estimate of the variance of measurement errors.
B. Sequential Differences

A preliminary screening of sample data by successive differences can serve

a dual purpose:

(1) indication of the order of the polynomial required to produce a
reasonable fit, and

(2) indication of isolated wild data points (outliers).

The first through fourth successive differences are presented in Table 1 when the actual
relationship of x to t is linear and in Table 2 when the relationship is quadratic. A
perturbation d is introduced in Xq

There are several salient features of successive differences that should be
noted:

(1) Ignore, for the moment, the perturbation in Xq. In Table 1, the first
differences (the A |;'s) consist of the velocity term a, plus noise. If a, is large with
respect to the noise (the ni’s), these differences will all have the same sign. The second
differences (the A ,,'s); however, involve only noise and their signs should be random.
This change from consistent signs for the Ali's to random signs for the AZi's is an

indication that a linear relationship of x to t is appropriate.

In passing, it should be noted that:

— 6
1 = -
o2 o2
2 B n n
(7'Z = 6 o 0 = 0'2/118’
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and that Z 1 is normally distributed, i.e.,

[t should also be noted that if a;, is not large with respect to o, the signs
of the A li's can still have the sign of a4 with the dominance of this sign depending upon
the relative magnitudes of a; and s

Next, consider the quadratic case (Table 2). The A 3;'s having random
signs and the AZi's are dominated by the sign of a,, and hence the quadratics are
indicated as the appropriate polynomial. Note that the signs of the A 's may also be
the same for all i if a, and a, have the same sign. If a; and a, have opp051te signs and a;
is greater than a, then there can be a change in the sign of the An 's where a; + (12 o
(i-1) ) a, changes sign. In the vicinity of this point the nl's can become significant and
produce some random sign terms.

Higher order differences are required to deal with higher order polynomials.

th

In general, random signs in (k+1) st order differences and consistent signs in k~ order

differences indicate selection of a (k+l)st order polynomial to fit the data.

(2) The perturbation d was included to provide an examination of the effect
of an isolated outlier on successive differences. For illustrative purposes, it will be
assumed that a successive difference greater than three times the standard deviation of
the noise in that difference will be considered as an indication that a perturbation exists.

The value ¢ =4 will also be used for illustrative purposes.

Now, note the entries in the lower part of Table 1. Unless a4 is known (or

estimated) a critical magnitude for the A ,;'s cannot be specified. For higher order

;th

differences the it difference of the j*"“ order ( & ) has a normal distribution.
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Where kji is the coefficient of din A ji® If d =0 then:

A ;. ~ N(0,

i )

i

Q
AN )

The situation is an application of statistical hypothesis testing. If A i is larger than can

be expected due to noise alone, then the presence of a perturbation (an outlier) is

indicated. The critical magnitude using assumptions of 1.0-0.99 = 0.01 as significance

level and o =4 is presented in the last row of Table 1. Thusif | A 9 | > 17, ] & 3 I
>18,0r | A " | > 17, for any i, then an outlier is indicated.

Note that the value o =4 was assumed for this illustration. If sequential
differences are used for preliminary screening before least squares curve fitting is
performed, the estimate Se for o will not be available. A value of ¢ may be assumed
from prior information of measurement errors but for purposes of preliminary screening
some value greater than 4 would permit elimination of data points with large
perturbations.

It should be emphasized that the above discussion pertains to the simplest
situations. For applications where there are missing data points, or where perturbations
are not isolated, more guidance will be required. The assumption that the noise
components (the ni's) are independent and have the same variance, also warrants

reservations in applications of the models.

2-6
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II. APPLICATION
A. Sample Data

A specific test in which a torpedo was launched against a submarine at the
Naval Undersea Warfare Engineering facilities will be used for illustration. The 3-D data
includes equally spaced times from 814 to 1000—verv few data points are missing.
Figure 1 shows the torpedo path with every fifth point. Segments of this torpedo path are
selected for application of the methodology presented in Section II. The presentation is

restricted to the x and v coordinates.

B. Data Sample I

The initial 21 points (814-834) appear to lie in a straight line in Figure 1 and
were selected as the first data sample. This data is presented in Figure 2 and Table 3.

(1) Successive differences:

The first and second order successive differences are also presented in
Table 3. For the x component, all the first differences are negative and the second
differences appear random (except possibly for the tail of the sample where a sequence of
four pluses oceur including one value (A 2’17=17.2) which is large enough so that it might
indicate an outlier). The alternating signs, (-, +, - or +, -, +) are not present so an isolated

outlier does not appear likely.

For the y component, all the first order successive differences are positive

and the second order differences appear somewhat random. Again, & 9217 = -18.2
7

indicates that something has occurred in the vicinity of tg Higher order differences

were not explored for this sample.
(2) Least squares smoothing:

Both linear and quadratic functions were fitted using the least squares

method outlined in Appendix A. The results are presented below:
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Table 3. Successive Differences — Sample I

& X; A Lo; Y; By Lo

1 5228.6 -3465.1
-71.8 +58.1

2 5156.8 +0. -3407.0 ol
-71.7 +60.8

3 5085.1 +2. -3346.2 +0.3
-68.8 +61.1

4 5018.3 -3. -3285.1 +1.8
-74.1 +62.9

5 4944.2 +8. -3222.2 -5.3
-66.1 +56.6

6 4878.1 -12. -3165.6 ks {e )
-78.1 +59.8

it 4800.00 +9, -3105.8 -3.7
-68.3 +56.1

8 4731.7 =1 -3049.7 +6.4
-79.5 +62.5

9 4652.2 +9. -2987.2 -6.1
-68.6 +36.4

10 4583.6 -4.! -2930.8 +3.9
-72.9 +60.2

11 4510.7 *25 -2870.5 -0.6
-70.5 +59.7

12 4440.2 -2. -28190.8 +1s]
-73.2 +60.8

13 4367.0 +3. -2750.0 -0.8
-70.0 +60.0

14 4297.0 -0. -2690.0 +3-3
-70.9 +63.3

15 4226.1 -1. -2626.7 -8.2
-72.5 +55.1

16 4153.56 +2 -2571.6 +4.9
-69.6 +69.0

17 4084.0 =30 -2511.6 +25
-66.3 +62.5

18 4017.7 2 -2449.1 -18.2
-49.1 +44.3

19 3968.6 +5 -2404.8 +3.4
-44.0 +47.7

20 3924.6 -12. -2357.1 +0.3
-56.5 +48.0

21 3868.0 -2309.1
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Linear

x(t) = 5288.3 -69.78t S, o = 16.73

gl = -3518.1 + 38,72t S = 8.33
Quadratic

x(t) = 5318.6 -T7.67t + 0.3588t% S _ = 1L.62

y(t) = -3532.0 + 62.33t - 0.1642t2 Sye = 6:30

The residual deviations:

A

e i = X; - x(t;)
A

s y(t)

are shown in Figure 3. Note that there is a definite trend in these residuals starting about
time tig Note also the general trend of the residuals with a small random pattern
superimposed on a curve for each residual set. Higher order polynomials could be used to
remove the general curve (this was not explored). Note, further, that no violent outliers
are indicated. The fitted linear function is shown in Figure 2 and the observed and
predicted values for X; and y; are presented in Tables 4a and 4b together with the residuals

in these components and the deviation

The sequences of signs observed in Table 4a for the exi’s and evi's are of

interest. There is a sequence of +'s, followed by a sequence of -'s, and ending with a

sequence of +'s for the e_.'s. Similarly, there is a sequence of -'s, followed by a sequence
i s 3

X
of +'s, and ending with a sequence of -'s for the eyi’s. (The sign of e,q can be ignored or

changed since the magnitude of ey8 is small.)




Linear

Quadratic
20 A1

10 - x\x\x/’\&

-10 4

=20

20

10 4 X
Mx"?
.E““——_ ___,7‘§Q:mx—fx\k‘n,/x"“~x;fx ' .

=10 4

N N

Figure 3. Least square residuals --sample I.
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Table 4a.

Linear Regression - Sample I

t; X; £ t.) i v; 3 t;) eyi d;

1 5228. 5218.5 +10.1 -3465.1 -3459.4 -5. 11.6
2 5158. 5148.8 +8.0 -3407.0 -3400.7 -6. 10.2
3 5085. 5079.0 +6.1 -3346.2 -3342.0 -4. T4
4 5018. 5009.2 +£9], 1 -3285.1 -3283.2 ) 9.3
5 4944, 4939.4 +4.8 -3222.2 -3224.5 + 2 5.3
6 4878. 4869.7 +8.4 -3165.6 -3165.8 +0. 8.4
7 4800. 4799.9 +0.1 -3105.8 -3107.1 g2 05 1ie:3
8 4371. 4730.1 +1.6 -3049.7 -3048.4 =1 2t
9 4652. 4660.3 -8.1 -2987.2 -2989.6 +2 8.5
10 4583. 4590.6 -7.0 -2930.8 -2930.9 +0. 7.0
11 4510. 4520.8 -10.1 -2870.5 -2872.2 e 10.2
12 4440. 4451.0 -10.8 -2810.5 -2813.5 3 11.°2
13 4367 4381.2 -14.2 -2750.0 -2754.8 +4, 15.0
14 4297 4311.4 -14.4 -2690.3 -2696.0 50 15.5
15 4226. 4241.7 -15.6 -2626.7 -2637.3 +9 18.
16 4153 4171.9 -18.3 -2571.6 -2578.6 +Tis 19.A
157 4084. 4102.1 -18.1 -2511.6 -2519.9 +8. 19519
18 4017. 4032.3 -14.86 -2449.1 -2461.2 +12. 19.0
19 3968. 3962.5 +6.1 -2404.8 -2402.4 -2. 6.6
20 3924. 3892.8 +31.8 -2357.1 -2343.7 -13. 34.5
21 3868. 3823.0 +45.0 -2309.1 -2285.0 -24, 51.1
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Table 4b. Quadratic Regression - Sample |

t, x; 2(t:) ey; v yit) eyi d.
1 5228, 5241.3  -12.7  -3465. -3469.8 +4.7  13.:
2 5156. 5164.7 7.9 -3467. -3408.0 +1.0 8.
3 5085. 5088.8 -3.7  -3348. ~3346.4 +0.2 3.
4 5018. 5013.6 +4.7  -3285. -3285.3 +0.2 4.
5  494d. 4939.2 +5.0  -3222. -3224.4 2.2 5.
6  4878. 4865.5  +12.6  -3165. -3163.9 ET )
7 4800. 792.5 +7.5  -3105. -3103.7 2.1 7.
8 4731. 4720.2  +11.5  -3049. -3043.8 5.8 12
9 4652. 4648.6 +3.6  -2987.: -2984.3 2.9 4.
10 4583. 4577 .8 +5.8  -2930. -2925.1 5.7 g.
11 4510. 4507.6 +3.1 -3870. -2866.2 4.3 5.
12 4440. 4438.2 +2.0  -2810. -2807.6 -3.2 3.
13 4367. 4369.5 2.5 -2750. -2749.4 0.5 2.
14 4297. 4301.5 -4.5  -2690. -2691.5 8 4.
15 4226. 4234.2 8.1 -2626. -2633.9 1.2 10,
16 4153. 4167.7  -14.1  -2571. -2576.7 +5.1 15,
17 4084. 4101.9  -17.9  -2511. -2519.7 W 14,
18 4017. 4036.7  -19.0  -2449. -2463.2  +14.1  23.
19 3968. 3972.3 3.7 -2404. -2406.9 2.1 4.
20 3924. 3908.7  +15.9  -2357. -2351.0 6.1 17.
21 3868. 3845.7  +22.3  -2309. 2295.4  -13.7 2.
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These sign sequences would ordinarily indicate that the next higher order
polynomial, a quadratie, should do well in reducing the residual errors. This is not
substantiated; however, as Table 4b demonstrates. The deviations in this table have four
sequences of the same sign and suggest that even a cubic polynomial will not necessarily

produce an excellent fit to the data—this was not explored further.

An alternative to using higher order polynomials is the reduction in sample

size. This alternative was explored for the sample with n=11. The results are shown

below:
Linear Quadratic
Sample Points Sxe Sve Sxe Sve
814-824 3.3 2.0 —_— —
819-829 2.9 1.9 2% 1.8
824-834 15.4 9.5 . -—
829-839 13.9 11.1 — _—

The three basic causes for residuals are:
(a) maneuver of object tracked (this is represented by the polynomial),

(b) noise in measurements, (this is represented by o« of which Se is

an estimate), and
(c) outliers (these will be discussed later in this report).

It is assumed that there are no outliers in Sample I. Subsample 2 (points 819
to 829) appears to be fitted quite well by a straight line and the quadratic was applied to
give an estimate of the size of ¢ . The first subsamples (points 814 to 824) are fitted
reasonably well by a straight line so the quadratic was not tried. The last two subsamples
have substantially larger Se’s. This could be caused by either torpedo maneuvers or a

larger noise component (larger ¢ )—this was not explored.




Cs Data Sample II

The second sample selected for study was the set with times 867 to 3887.
These 21 points appear to present a curved path which might possibly be fitted by a
quadratic. First, consider the successive differences in Table 5. Some difficulty similar
to an outlier is indicated in the vicinity of t =6 (ti = 872). Examination of the first
successive differences shows a drop in velocity between ts and ts and only partial
recovery between tg and to. One possible explanation would be an additional data point
between t¢ and t6. The actual explanation is the inadvertent introduction of a
measurement from a different array taken at time ts and entered as the meaurement at

tg Measurements at to, and subsequent times, should be shifted to respective preceding
times.

Instead of fitting all of Sample II, eleven points (872-882) were selected
somewhat aribitrarily for fitting by least squares—these are plotted in Figure 4. The
second differences all have the same sign and the third differences are small and have
apparently random sign. The least squares straight line fit is presented in Table 6a and
sketched in Figure 4. (Note the shift in the time scale). This was introduced to reduce
the magnitudes of the numbers calculated in determining the fitted line and Se- In dealing
with the quadratic, the means x = 1—% 3 x;andy= —Ili 3 y; were also subtracted from
each observation X; and Ypr respectively, for the same reason. Table 6b presents the
quadratic regression. The reduction in the Se's is dramatic as would be expected from
Figure 4. All of the e;'s are less than 5 and hence within the residual noise that could be
expected with a ¢ of 2 or 3. The signs of the exi's; however, show some indications of
lack of randomness. For this reason, a third-degree pclynomial was tried for the xi's only.
This produced the value SXe = 0.946 with the maximum magnitude of any €yi being 1.2.
The cubic fits the data very well indeed.

D. Data Sample OI

The third sample selected for study involved an S-shaped maneuver as
indicated by the 21 points (848-868) shown in Figure 5. The x and y coordinates of these
points are presented in Figure 6 where it is evident that first and second order polynomials
will not provide acceptable fits to the data. A third-order polynomial appears possible for
the yi's and a fourth order for the xi's. A subset of 11 points (851-861 or points 4-14 in
Figure 6 and Table 7) will be used for illustration.
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Table 5. Successive Differences - Sample II
" a4y B 83 i &y B9 A

1 2012.90 -1255.5

+18. +94.2
2 2030.0 +8.1 -1161.3 -3.1

+26. +0.7 +91.1 +0.1
3 2056.1 +8.8 -1070.2 -3.0

+34. -0.4 +88.1 +1.9
4 2091.0 +8.3 -982.1 -1.1

+43, -43.4 +87.0 -106.5
5 2134.2 -35.1 -895.1 -107.6

+8. +70.9 -20.6 +227.9
6 2142.3 +32.8 -915.7 +120.3

+40. -15.1 +99.7 -142.3
7 2183.2 +17.7 -816.0 -22.0

+58. -12.6 +77.7 +12.8
8 2241.8 L -738.3 -9.2

+63. +2.8 +68.5 +5.3
9 2305.5 +7.9 -669.8 -2.9

+71. -5.0 +65.6 -7.1
10 2377.1 +2.9 -604.2 -10.0

+74.° +4.8 +55.6 +5.2
11 2451.6 F T -548.6 -4.8

+82. -4.1 +50.8 -2.8
12 2533.8 +3.6 -497 .8 -7.6

+85. -1.3 +43.2 -0.8
13 2619.6 2503 -454.8 -8.4

+88. +1.5 +34.8 +0.4
14 2707 .7 #3188 -419.8 -8.0

+91. -3.7 +26.8 -0.4
155 2799.6 +0.1 -393.0 -8.4

+92. +3.5 +18.4 -2.2
16 2891.6 ot I -374.5 -10.6

+95. -3.5 +7.8 +3.5
17 2987.3 +0.2 -366.8 -7.1

+95. -1.8 +0.7 -4.0
18 3083.2 -1.6 -366.1 -11.1

+94, +5.9 -10.4 -1.7
19 3177.5 +4.3 -376.5 -12.8

+98. -9.2 -23.2 +9.5
20 3276.2 -4.9 -399.7 -3.3

+93, -26.5
21 3370.0 -426.2
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Table 6a.

Linear Regression -

11 Points (872-882)

& % R(t;) ey; v; yit,) eyi a,
-5 2183.2 2148.5 +34,7 -816.0 ~762.0 -54.0 64.
= 2241.8 2229.7 +12.1 -738.3 -716.5 -21.8 24,
=3 2305.5 2310.9 -5.4 -669.8 <GiTLid +1.3 5.
-2 2377.1 2392.1 -15.0 -604.2 -625.7 +21.5 26.
=1 2451.6 2473.2 21,6 -548.6 -586.2 +31.6 38.
0 2533.8 2554.4 -20.6 -497.8 -534.8 +37.0 19
1 2619.6 2635.5 160 -454.6 -489.4 +34.8 38.
2 2707.7 2716.8 -9.1 -419.8 -443.9 +24.1 25.
3 2799.6 2798.0 .6 -393.0 -398.5 +5.5 5.
4 2891.6 2879.2 +12.4 -374.6 -353.1 -21.5 24.
5 2987.3 2960. 4 +26.9 36641 ~307.6 -58.5 64.
X ()= 2554.4+81.19t S (t)= -534.8+45.43t
S, =20.33 Sye = 36.41

3-13




Table 6b. Quadratic Regression - 11 Points (872-882)
4 X; Aty exi ¥ ¥t eyi 9;
-5 2183. 2179.3 +3i+'9 ~-316. -817.8 +1.8 4.3
-4 2241. 2241.8 -0..2 =738 =7 318;9 +0.6 0.6
=3 2305. 2308.8 =3.3 -669. -667.4 -2.4 4.1
<2 2377. 2979.7 -2.6 -604. -603.3 -0.9 2.8
-1 2451. 2454 .7 -3.1 -548. ~-546.7 ~-1.9 3.6
0 2533. 2533.9 -0.1 -497. -497.6 -0.2 052
1 2619. 2617.1 +2.5 -454, -455.9 +1.3 2.8
2 2707. 2704.5 +3:2 ~-419. ~-421.6 +1.8 S T
3 2799. 2796.0 +3.6 -393. -394.8 +1..18 4.0
4 2891, 2891.6 0.0 -374. -375.5 -0.8 0.8
3 2987. 2991.3 -4.0 -366. -363.5 -2.6 4.8

bl
XAt) = 2533.9+81.19t+2.057t"

Sxe=3.32
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J(t) = -497.6+45.43t-3.724t

S

e=1.91
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The results of fitting third-degree polynomials to these 11 points is
presented in Table 8 and the fourth-degree polynomial in Table 3. The cubic equation fits
the y component quite well, but even the quartic equation leaves something to be desired
(smaller Se) for the x component. Higher order polynomials were not tried. The estimates
Se for ¢ obtained by fitting polynomials to the subsample of 11 points are presented
below:

Order of
Polynomial X ¥
1 66.8 94.5
2 g8 42.6
3 34.0 345
“ 958

Improvement in fitting the y component by increasing the order of the
polynomial is quite dramatic but the improvement is considerably slower for the x
component. The third-order polynomial could be considered acceptable for y but a fifth-
order polynomial should be tried for x. The order of polynomial used does not have to be
the same for both components.

E. Discussion

Only one in-water run was examined and, for it, only selected sections of the
torpedo path were treated in any detail. Nevertheless some conclusions can be made
about application of the Sequential Differences and Least Squares Regression techniques
to 3-D data.

(1) Sequential differences:

(a) These differences provide some capability for locating isolated
outlier points which differ substantially from the path of the object being tracked. This
was illustrated in Sample [I. The model shown in Tables 1 and 2 needs extension to higher
order polynomial paths and multiple outliers. Also, the critical magnitudes for sequential
differences (refer to Table 1) must be increased to allow for accelerations since the use of

sequential differences will precede f{itting a polynomial and hence the order of the fitted

polynomial will not be known at the time. Thus sequential differences should be used only

for a first sereening for gross outliers.
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Table 7.

Successive Differences - Sample III

Y X; A A, L ¥ A L, Ag
1 2949. -1364.

-40. +74.4
2 2889. -10.8 ~1289. 0.

-56. +10.1 +74.0 -17.
3 289, ~0.7 -1215. -17.

_51. 223 +56.5 +49.
s 217, ~23.0 -1159. +32.

-74. +12.8 +88.8 -83.
5 2702. -10.2 -1070. -51

-84, +1.4 +37.5 +14.
6  2617. 8.8 -1032. ~36.

-93. +18.0 +1.0 8.
7 9504, 9.2 -1031. -45.

_84, +20.8 ~44.0 +16.
8 2440. £30.0 -1075. -28.

54, 8.4 794 49,
9 2385. +38.4 -1148. -19.

-15. +3.2 ~91.7 +32.
10 2369. +41.6 -1239. 412,

+25. -56.7 -78.9 ~25.
11 2395. -15.1 -1328. -12

+10. ~28.5 ~91.4 +15.
1:2 2406. -43.6 -1420. +2.

-33. 8.8 -88.5 421,
13 2373. 34.8 ~1508. 24,

7. +13.4 B, +15.
14 2305. 1.4 -1573. +39.

-89, +19.2 ~25.0 vy
15 2216, 2.2 ~1598. 1.

-o1. 417.9 +16.8 '
16 2124, +15.7 -1581. +36.

-75. +17.8 +53.7 7.
I 2049. +33.5 -1527. +29,

_42. 4.2 +83.6 -20.
18 2006. +37.7 -1440. +9.

-4.,° -23.5 +93.2 -7.

19 2002. +14.2 -1350. +£2s

+9, -5.9 +95.3 -3.
20 2012. +8.3 -1255. -1.

+18. +94.2
21 2030. -1161.
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Table 8.

Cubic Regression - Sample III (11 points)

Sxe=34'0 Sye=3.a

R(t)=2423.3-29.812t+5. 827t >-. 649308t

(t)=-1147 .7-79.73t-8. 761t 2+1.5271t

3

3-19

& X, x(t) ey v () eyi a,

-5 2077 2804.8 -27.8 -1059.1 -1159. -0.1 20

-4 2702. 2680.2 +22.3 -1070.3 -1066. -3.6 22

=3 26117. 2383.9 +33.9 -1032.8 -1028. -4.2 4.

-2 2524. 2511.8 +12.5 -1031.8 -1035. DT 13.

-1 2440. 2459.6 -19.6 -1075.8 -1078. +2.'9 19.
0 2385. 2423.3 -37.6 -1148.2 -1147. -0.5 37.
1 2369. 2398.6 -28.8 -1239.9 -1234. -5.2 29.
2 2395. 23813 +14.2 -1328.8 -1330. 322 14.:
3 2406 . 2637.6 +38.5 -1420.2 -1424. +4.3 38.
4 2373. 2252.8 +20..3 -1508.7 -1509. +0.4 20.
5 2305. 2333.1 -27.8 -1573.1 -1574,. +1.4 2.

3
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Table 9. Quartic Regression - Sample I (11 points)
4 X /k(ti) Cxi
=5 2777.0  2774.0 +3.0
-4 2702.5 2711.0 =849
-3 2617.8  2614.8 #8110
=2 2524.3  2516.9 +7.4
-1 2440.0  2439.1 +0.9
0 2385.7 2392.5 -6.8
1 2369.8  2378.1 -8.3
2 2395.5 2386.6 +8.9
3 2406.1  2398.4 H7 7
4 2373.2 2383.T -10.6
5 2305.3  2302.3 +3.0

/)}(t)=2392.4—29.812t+16 . 533t2~.6943t3-. 428234t

Sxe=9'3



(b) Sequential differences also provide some indication of the order of
polynomial that will be required. One indicator is the number of sign changes that occur
on the successive differences of a particular order. If there are few sign changes, then a
non-random effect is indicated and a higher order polynomial will be indicated. Thus, for
example, in Sample II the 11-point data subset shows a long sequence of +'s for the A 2i's,
but no such sequence (indicating randomness) for the A 3i’s. Hence, a third order
polynomial can be expected to provide some improvement over a secand-order
polynomial. This type of information may be difficult to incorporate into a data
smoothing algorithm, but even some simple procedure can be of help in reducing the
computational load.

(2) Sample Size:

(a) Although it is possible that a sample of 21 points could be fitted
with acceptably small Se in some instances (the quadratic was not tried on Sample II), it
would appear that smaller samples (e.g., n=11) will allow fitting the data with a
reasonably low-order polynomial. The size n=11 is not sacrosanct but will leave some

room for elimination of outliers and so seems to be a reasonable size.
(3) Least squares smoothing:

(a) By its nature, the estimate Ser for the standard deviation o of
the measurement noise, is monotone decreasing as the order of the polynomial increases.
(An n-1 order polynomial should be able to fit n points exactly so that Se would be zero.)
The appropriate order polynomial is one which reduces Se to the level of the noise in the
measurements. This may vary with the path and the array making the measurements. For
the portions of the path examined, it is suspected that Ty is less than Ty since Sye is
generally smaller than Sxe for a given order polynomial. The decision to use a higher-
order polynomial to fit a set of data depends upon the value of Se obtained for a given-
order polynomial. If S, is small (3 or 4), then higher-order polynomials cannot be expected
to give much improvement. The extent to which Se can be reduced will depend upon the

component as well as the polynomial degree.
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(4) Outliers:

(a) In addition to rough screening for outliers by sequential
differences, there is additional screening that can be performed using residual errors after
a polynomial has been fitted to the data. Outliers contributed substantially to S, and the
two basic techniques of reducing S, are elimination of points with large residuals, or

increasing the order of the polynomial.

(b) Elimination of outliers using residuals after smoothing ecan be
accomplished in two ways:

(1) by confidence intervals—a residual greater in magnitude than
some specified multiple (3 or larger) of S, can be considered to be a outliers, and

(2) by variance reduction—the ratio of S 's before and after
removal of a point, or points, with substantial residuals can be used as a basis for the
decision on whether to remove the points. For example, if S, (after)/Se (before) < r,
then the points should be removed (Grubbs' criteria). The value of r is in the range 0.0 to

1.0 and could be changed depending upon the magnitude of S o
(5) Sampling rate:

(a) The smoothing of 3-D data can be performed to provide either a
parametric representation of path segments, or specific information such as position and
velocity information, only at certain points on the path. These will be callled "parametric
estimation”" and "point estimation," respectively.

(b) To illustrate parametric estimation, consider data collected at
200 sequential observation times (e.g., 800 to 1,000 for the 3-D data used in this section).
Samples of 11 points will be used. Sample S, will consist of points 1 through 11, sample S,
of points 10 through 20 and, in general, sample Sj of points from 10(j-1) to 10j. There will
then be 20 samples on the path. Each sample of 11 points is to be fitted by a polynomial
of appropriate degree and the parameters of the polynomial together with the value of Se
recorded for the path segment represented by that sample. Note that there will be two
points of overlap between S1 and 82 and one point of overlap thereafter.
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(e) For point estimation, sequence of points must be provided. For

data consisting of 200 points it may be considered that occasional monitoring is sufficient
for points 0 to 50 and 100 to 150, but that behavior of the path from points 50 to 100
should be monitored more often and behavior from points 150 to 200 should be followed

closely. Then the following sequence of points could be considered reasonable:

O 00 ~3 O UV b W b

—
o

11
12
13
14
15
16
I57
18
19
20

Points

in Sj

5-15
25-35
45-55
55-65
65-75
75-85
85-95
95-105

115-125
135-145
145-155
150-160
155-165
160-170
165-175
170-180
175-185
180-190
185-195
190-200
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Midpoint

t.
1

10
30

60

70

80

90
100
120
140
150
155
160
165
170
175
180
185
190
195




(d) At each midpoint time to the position coordinate estimates, the
velocity in these components, the resultant velocity, and Sej can be recorded together
with additional information, such as acceleration components, if desired. Note that the
sequence of 20 points suggested above has substantial overlap of samples in some cases
and data gaps between samples in other cases. This was introduced intentionally since
least squares smoothing produces better estimates (smaller confidence intervals) at the

midpoint of the sample when the fitted curve is a straight line (refer to Appendix B).

(e) Parametric estimation could also be modified to delete some
samples (e.g., alternate samples from tj=100 to t]-=150). It should require greater
modification to achieve the quality of point estimation procedure at other than
parametric sample midpoints when a straight line (first-order polynomial) is used. When
higher order polynomials are required, the preference for the best estimate at midpoint of
the sample is lost (refer to Appendix B). Making both techniques available provides some

flexibility in data smoothing to accomodate potential customers.
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Iv. A DATA SMOOTHING ALGORITHM
The following procedure is suggested for smoothing 3-D data:
Step 1: Select appropriate sample size. (11 is suggested as being small enough to

provide some capability of fitting path segments of maneuvering torpedoes without
requiring high-order polynomials. Some leeway for dropping outliers is also provided.)

Step 2: Select parameter of point estimation.
Step 3: Select sampling rate. (A standard rate such as deseribed in Section III E4

should be provided as a default rate for parameter estimation and the midpoints of these

samples as a default rate for point estimation.)

Step 4: Adjust data for missing data points. (The principle applied here is
minimization of the effect of the numbers on sequential differences. For a single missing
datum, the average of the values at two adjacent times will minimize the second
differences. In any case, data supplied in this step must be removed before least squares

smoothing is applied.)

Step 5: Calculate first, second, and third order sequential differences.
Step 6: Determine approximate polynomial order k. (The (k+1)St order sequential

differences should contain noise only, and thus, have random signs. Sequences of 4, or
more, differences with the same sign suggest the presence of a non-random component as
does the occurrence of 4, or fewer, changes of sign. The presence of a non-random
component is going to be awkward to identify. If the second differences are random, then
k=1. If the second-order differences are non-random, but the third-order differences are
random, then k=2. If the third-order differences are non-random then fourth-order
differences should be calculated and examined for randomness. (This examination of

sequential differences in increasing order should probably not be carried beyond the fifth-
order.)
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Step 7: Screen successive differences for gross outliers. (This must follow
determination of approximate degree of polynomial since it should be based on comparison
of magnitude of deviation to noise only as indicated in Tables 1 and 2. The critical values
suggested in those tables should be inereased substantially. Some limit, possibly between
50 and 100, should be selected keeping in mind that this is a first sereening for gross
outliers and a second screening will be made. Any outliers found in this step; however,
will reduce computations in later steps. Remove any outliers found and the observations
for the other space components at the same observation time.)

Step 8: Check for polynomial degree compatibility. (If the number of outliers
removed (r) satisfies the inequality r + k = n-1, where k is the degree of polynomial found
in Step 6 and n is the sample size after data points supplied in Step 4 are removed, then
fitting a kth order polynomial will be inappropriate. For example, if r = 4 points are
removed from a sample in which one data point has been created in Step 4, then a
polynomial of degree 5 can be fitted to the data without any residual errors since there

are 6 linear relationships of the 6 coefficients.)

Step 9: Fit a polynomial of degree k to the data. (The least squares procedure

outlined in Appendix A is applicable. At this step only Sk need be determined and not the
e

coefficients.)

Step 10: Seek acceptable Se. (1f Ske is unaceeptably large, repeat Step 9 with k

replaced by k+ 1. Repeat this step until either Se is acceptable or a polynomial of
degree 5 is fitted to the data.)

Step 11: Complete least squares polynomial fit. (The coefficients for the polynomial
of degree found in Step 10 are now needed, and the residual errors.)

Step 12: Second screening for outliers. (One of the procedures discussed in Section III

E3 should be applied to locate any outliers not found in Step 7. Remove the outliers).

Step 13: Repeat Steps 9, 10, 11, and 12 until no more outliers are found. (The
polynomial obtained will be used for smoothing sample data. Note that the alternative
procedure of searching residuals for each polynomial degree to locate outliers may result

in removing points which are not actually outliers but legitimate observations for a higher
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degree polynomial. On the other hand, the proposed method could use a higher order
polynomial to fit outliers when a lower order polynomial should actually be used. There is
a choice of the type of misfit that is acceptable.)

Step 14: Record smoothed path. (For parametric form, if specified in Step 2,

recorded data includes coefficients of fitted polynomial, S_. and n; for each sample S;

ej j
specified in Step 3. For point estimation form, if specified in Step 2, recorded data
includes: time tj estimated coordinates '§j=x(tj), 9.=y(tj), and Qj =z(tj), velocity
components, Sej, and nj for each point specified in Step 3. Additional path information

may also be specified; e.g., acceleration components.)



V. CONCLUSIONS AND RECOMMENDATIONS

The procedure suggested in Section IV provides a reasonable approach for
obtaining the information desired in parts (1), (2), and (3) of Section I B. No attempt has
been made to provide the information in part (4).

In instrumenting this procedure, several parameters must be provided:
A. Sample Size (Step 1)

A smaller sample size of n=7 has been suggested. This would permit fitting
path segments contained maneuvers with lower order polynomials, but is subject to
greater degredation by missing data points and removal of outliers. Experience on
relative occurrence of such events in actual field data will be useful in selecting

appropriate sample size.
B. Choice of Parameter or Point Estimation (Step 2) and Sampling Rate (Step 3)

The desires of the customers who will use the smoothed data is of primary

concern here.

ol Specifying Approximate Polynomial Order (Step 6)

h

It will be difficult to specify a simple rule for determining that the k" order

sequential differences contain non-random components but the (k+1)St order differences
involve only random components. The Theory of Runs can be of some help here although a

simpler rule is desirable—this needs further study.
D. Rough Sereening For Outliers (Step 7)

A reasonable critical level for identifying outliers by sequential differences
must be established. The occurrence of an isolated outier was considered in Section II B.
Other potential producers of large sequential differences such as paired outliers, violent
changes in velocity, et cetera, should be examined for resultant effects. Identification of
signatures for such effects will be useful in using sequential differences to identify
outliers.

=1




E. Polynomial Degree Limitations (Step 10).

The limitation of polynomial degree to 5, or less, appears reasonable for
samples of size 11. The possibility of decreasing this limit to 4 or inereasing it to 6 or
higher should be considered. This may require more experience with in-water run data.

For smaller sample sizes, such as n=7, reduction of this limit to lower polynomial degree
should be considered.

F. Computing Smoothed Path (Step 11)

The pivotal condensation method outlined in Appendix A can be simplified
even further in certain cases which may occur frequently enough to take advantage of
their commonality in the computer program. In particular, when the sample consists of
n=11 data points at adjacent times, the shift of the time origin to the midpoint of the
sample produces the following effects:

(1) coefficients of the polynomial parameters are the same in the normal
equations for all samples,

(2) only the last column in the pivotal condensation format changes with
sample, and

(3) the other columns in the pivotal condensation format require only
addition of a row and a column in each box when the next higher degree polynomial is
considered.

The above commonality is also clearly evident in the vector representation presented in
Appendix A. The extent to which this commonality can be exploited depends primarily
upon the rarity of missing data points and outliers. Indeed, depending upon requirements
of the ultimate users, data smoothing could conceivably be restricted to only such
samples.

In summary, the data smoothing algorithm presented in Section IV appears
reasonable, but there are several elements that must be specified before it can be
implemented. Some of these can be improved by further research, others depend upon the
quality of the data which can only be determined by experience with actual 3-D data.

Finally, some of them can only be determined in consultation with the ultimate users of
the smoothed data.
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APPENDTIZX A

LEAST SQUARES DATA SMOOTHING

aA-1 LINEAR LEAST SQUARES WITH ONE PREDICTOR

Sample:
(xi yi) i=1,2,...,n

Assumptions:

Al =-- Actual relationship between X and Y
is linear, i.e.,

~ .~

y(X)= a+8x

A2 -- Abscissas are without errors
i 7%;
A3 -- Ordinates contain measurement or
observations/errors
Yi=§i+€
Ei = observational error
Y=Y (x;)

Problems:
Fit a straight line to the data

Engineer's Solution:

Let ¥ (x) =a+bx
D= ; ‘= n yi-a-bxi)2

The coeff1c1ents a and b are selected to
minimize D (the sum of squares of the deviations of the
observed y;'s from the fitted line). Setting

32: a—Q=
7a 0 and b 0




gives the two equations
na+(in)b=Zyi
(in)a+(2xi )b=inyi

Solving these equations yields the desired
estimates a and b for the parameters « and 8, i.e.,

n (3X.7,) - (sx,) (3y;)

b = 2 . 2
n(in)—(Zx”
n
Computational Format:
The following format uses pivotal

condensation to produce a and b. It also yields D and hence

the sample variance
Z_l ] 2
Ba s % i

without requiring calculation of the individual ei's.

n (zxi) (zYi) AXX=[n(zxi2)-(zxi)2]/n
(inz) (inyi) AX}"=[n(inyi)-(zxi) (Zyi)]/n
(Zy;?) Ay, =[n(Zy;?)-(Zy;)*1/n
2
A By D: (Ayy Ay AVy )/ Axx
Ayy Se=D/(n-2)
, D b=A,, /A
a b S; a=[(2yi)-b(2xi)]/n

Statistician's Solution:

Statisticians augment the Engineer's Solution
by adding the following assumptions:

A4 -- The observational errors (the €.'s)
are realizations of independent random variables, Ei's, with
zero means and common variance, i.e.,

=¢ F.\=
uEi b(t‘l) 0

2 2
o =8 (Ej-ug )*1= 02 for all i.
i Ey .
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A5 -- The observational errors are
normally distributed random variables. This will be denoted

by

Ei ~ N(0,0?)

Now let y. denote the realization of the
random variable Yi' Then

¥, =§(X;) +E;
and

4 =3

to(Yi) Y(xl)

Further, the random variable Qi can be expressed in the form

~

Y.=A+BX.

i i
where

nx Y. - x.) (3Y.)

B=—-i-1 ! i- Ayv ang
n(Ix: )-(Ix;)? a

Xy x4 XX
A= (ZYl)‘B(XXi )

n

Note that A and B are linear functions of the Yi‘s and hence of
the Ei's. It can now be shown that

By =g (A) =2
& and
uB=§(B)=B
so that a and b are unbiased estimators for a and 8°. The

evaluation of the variances of Y (x), A and B is simplified if
the xi's are shifted so that their mean is zero. Then, since

in =0
Axx=LX;®
Axy= IX{Yi
b= (Ix;¥;)
(zx})

as= zyi ='§'

n




This shift in the x-axis will be assumed in the development
which follows.

It can now be demonstrated that

N

0y, =%
ioz/n,
053=0%/(x; %,
Cov (A,B)=8[(A-a) (B-8)]1=0

ag

wN:uN

2 - ; xz
9z T [n * (inzJ a?, and
g(Sg )= o*,

The last relatlonshln is very important since Eé is an
unbiased estimator ofcgand is our only source of information
on this parameter.

The assumption of normallty (AS) together with
linearity of the other random variables in the E 's insures
that they are also normally distributed, i.e.

Y ~ N(y,0%),

A ~ N{(a,0%/n),

B ~ N(8,02/1%x{?%), and

~ o~ 2
Tex) ~ NIT(R), (5 +—) 0%
1

The random variable (n-=2) SE,OZ has a Chi-Square distribution
with n-2 degrees of freedom and the random variables.

T, = Yn(A-q)
Se
By =Eo and
Se»’i'.xi2
A o = (¥ (x) -v(x))
vy iX
[] S /l + Z)}((

have a Student-T distribution with n-2 degrees of freedom.
These distributions can then be wused to

establish confidence intervals for a, B, and y (x) at any Xx.

Thus, for example, with k from Student-T tables such that

P (-k<T<+k) =.95



we have the following 95% confidence intervals

(a-kSe ’ a+ ks )

Yn n

for o,

1

(b-kSe YIxiZ, b+kSy YIX,7)

for 8, and

(Y (X)-kS o 73+ e Y (X) +kS o /2 +—X—p)

for § (x) at any x. It should be stressed that the confidence
interval for ¥ (x) given above involves measurements about the
mean of x (X=0). The general form for this confidence
interval is

=3 - 2
T 1 (x=X) ? Py (x7x)
F0-kSe /4 + B L poonse /o v —HERS

It should be noted that the confidence interval for § (x) 1is
shortest for x=X and increases as x deviates from this value.

A sketch of the situation can help clarify the
mathematical elements involved.
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m Ny QL
=
"
08

1

(x)

e. =
€

a+Rx
a+bx

actual linear relationship
fitted
observational error

fitting error

= prediction error at any x




LINEAR LEAST SQUARES WITH TWO PREDICTORS

Sample:

(x . ?
i " oad 1

Assumptions:

Al - y(§)=a°+alil+a2§2 X = (X1,X2)
AZ -- i 1t R TR
A3 -- Y=Y (%) +€ X, = (xy,%54)

Engineers' Solution:

Let ‘}(x)=a°+alxl+azx2
ei=yi-y(xi)

- 2 —— - 2
D=le; “=L(y a -ax. azxzi)

Minimizing D
3D __y, 3D o, 3D g

Ja Ja Jda
4] 1 2

produces the normal equations

na +(Ix )a, + (Ix ;)a, = (Zyi)

2 =
(lei)ao + (ZXli )al + (leiyzi)az = (leiyl)

2
(szi)ao + (lei zi)a1 st (szi )az (sziyi)

which can be solved for a ., a; and a, in terms of sample data.

Solving (1) focr a, gives

a,=l(Iyy)-(Ixj)a -(Ix,5)a,l/n

Substituting (1’) in (2) and (3) gives

Apjat A ,a,5A,y
AlZa 1+A22a2=A2y

(1)
(2)
(3)

(1)

(2
(3)




Solving (2') for a, gives
a1=(A“-a2A12)/A“ (2").

and substituting in (3') gives

Bz X
a, = 3
& /E!z: ( )

where the coefficients will be defined in the comgutational
format which follows. Equations (3" ), (2" ) and (1 ) can be
used to determine the values of a,, a,, and a,

COMPUTATIONAL FORMAT

n 0% ST . S Ly, A, =[n(2xjixki)—(2xji)(Zxki)]/n
zlei ZXIIXZi zXzzyi Ajy'—'[n(zxjiyi)-(zxji) (Zyi)]/n

= 2 V= 2
LXg g LxyiY5 Ayy [(n(Zy;°)-(Zy;)*1/n
Zyi2 B22=[A11A22-A12%] /A1,
B By A1y B2y=[A11A2y-A12A1y]/A11
A A B, =[A,;A -A;v%]/A
22 2y vy (A, vy 1{ W 11
A, De=[B,,B, B, *1/B,,
B,, Bzy 1
2. 2_
BYY Seg‘= e by ey -De/(n-3)
De a2=B2y/B22
2 - -
a4, &y a, se al—[Aly a2A12]/A11

a0=[ (Zyi)‘az( X Zi)-al (lei) 1/n

Staticians' Solution

Assumptions A4 and A5 lead to the following
random variables and their distriubtions

E = observational error in y at (xl’x2)

~ N(0,0?%)
Tix,x )= J(xgx,)+E
~ N(y(x,%,), 0°)
A =B ;
2 Zy/BZZ A11 5
~ N{a,, a%)

A A -A 2
0 L1 N 5




A=A -AA ]/A
) 1 2 12

Y 11

A
~ N al, 22 e O,2
A A -~-A?
3 0O WIS (360 12

Ao=[(ZYi)‘AxZX;i‘Azzxzi]/n
2= N(aoldz/n)

Also

Cov (Ay,A,)=Cov (Ay,A,)=0
Cov (A,,A.)= -A, . 2z

Then for a predicted value ¥(X,,X,) at any point (x,,x,) we
have

1 ( A, . A, A .
2 = | = 4| =L |x 222 —_—t X X, + [—=2a_\x 2 2
UY [n Allez) ! <ALIBZA) Lo <A11Bzz) ‘ &
This together with
ug= E(R) =y (%, ,%g)

and the fact that

T(X,/X;) - N(ug,0%)

-~

can be used to establish confidence intervals for y(x,,x.)
CAUTION: In deriving these formulas it was

assumed that §1 = X =0. For data in which this shift has not
been made, the formulae must be adjusted.

Quadratic Model

The quadratic mode

§= agta,X+ta,x*

can be transformed into a linear model with two predictors
by the transformation




A-3. LINEAR LEAST SQUARES WITH THREE PREDICTORS

Sample:
(xxi’xzi’xsi’xi) i=1,2,...,n
Assumptions:
R, e V(X ,X2r,X3) =g+, X, +a, X ta X,
A2 == xi=ii i=1,2,3
A3 -- yl = g’(xlrxzxs)"'ei

Computational Format

n lei szi szi Zyi Auv=[n(2xuixvi)-(2xui)(vai)]/n
< -
Ix ” leixzi leixgi X ¥4 u,v=1,2,3
2 = =
2
ZXSi ZX3i 1
2 - s
Ly Byy™ (R11A, =R A L) /AL
All. Al.2 Al.3 Aly
Ay, Azs Azy Cuv=(BzzBuv_BzuBzv)/Bzz
A33 A3
2
A = =
. De=(C33C,,=Cyy )/Css
Bz2 Bas B,
1
Bis B; S.=De Mn-4¢ =3 I e;
B
Yy
C33 C3y A3=C 3y/C33
@
Yy
D A2=(Bzy-agBZY)/Bu
as a asz a; se2

A-10



= - A =
1 (Al a3 13a.A ) /B

2 12 11

%

ao=(2yi—a32xJi—aZszi-aIZXIi)/n

(x ,x ,x )=a +a x +a x +a x
e 2y 9 1 1 2 2 3 23
Statistics
v =A + + 4
Y(Xl,XZ,X3) Ao Axxx Azxz Aaxa
=Prediction Equation
It can be seen that the A.'s, and hence
2(x ,xz,xa) are normally distributed. Determining their means

and’ variances 1is quite mathematically involved and will be
delayed until the vector solution is considered.

Cubic Polynomial

v(x)=a +a x+a x’+a x°
o 1 2 3

Transformation

y(x)=a +a x +a x +o x
¥ 171 @2 44

A-11




A-4 LINEAR LEAST SQUARES WITH k PREDICTORS

Sample Data:

(Rjgreee¥eye¥y)  i=l,..0,n

Linear Model:

-~

Y=a +a X +,..+q, X

0 VIS § kk
Prediction:

¥=a +a X +...+a. X

0 11." kk

Computational Format

n ZX Ii ZXZi e o 0 Zin ZYi
2 -
lei By XZi”'lei Xpi % Yi
sziz ...... szlel Zleyl
: :
Ly Ixei¥y
2
A A . e A A
11 A 1k LY
A e By A,
By Bpy
A
Yy
Bigiv2 @ wanes Az .24 Ay .2y
T R Az .3 g =1 5
Bgwie Ay .yy

A-12



3 © 33 33k 3% 3 ¥
A°
3+ ky
Ak'kk A“'ky
Ap.,,
D
A, Sa?

k=1

A-13




A-5 LINEAR LEAST SQUARES IN VECTOR FORM

This will be presented for k predictors (xq
res e Xy ) i Let the sample data be (X (X 1 Xy s .) with
i=1l,....n. This data can be presented as "a vactSE %} and a
matrix % where

Y1 138 apX
. X - 144 Kl
y = and x = L 38 eaX
: 12 k2
n LX) et
y n «n

. > - >
Now define vectors &, x and & as

a X a
0 0 0
X
1 aj
-> ) > s >
a = . /X =1 , and a =
X
o k a,

where x°=l. The linear model then takes the form

RS >+ n
Y=Y (X, ,..,%X,)=0 X= T OQ.X,
(¥ k) ;=0 J 3

=} " y o
where a' denotes the row vector which is the transpose of &, i.e.,
a's( )
(o Bl (o WY TR
Gy r&,
The fitted equation are

Y=V (x ,,,,xk)=3T§= 7 B
1 i=0 J 3

where the aj's are established to minimize

D=Se,?
el

with

In vector form, we have

> > >
e = y=ata

A-14



so that

The normal equations (to minimize D) are

e 5
XT'X a=xTy

with the solutions
=X %7y

Expressing the coefficients in terms of random
variables, we have

R= 3% X%

where
2 =7 >
Y=Y yeen, ¥ J=(THE) =T 4E
1
with
E =(E ,...,E )
1 n
= S—- = > T
v =(y1, /¥n) =(xa)
= 2>
Y=y +E
using
% (E) =0
.
E(E E )=Io?

where I is the nxn identity matrix, we have
. r
g (%) =%
. 22T
g(§§ y=Io24VyY
and hence the covariance matrix for Y is

T = Q"'*'T :-:r
Cov (Y,Y')=g(YY )-§% =Ic?

A-15




Then

ER)=(x % ¥ &)

<—>M—>-1 DTIEDr
=(x x)' x xa=a

Thus 3 provides unbiased estimates for the elements of a.

For the variances and covariances of the
coefficients we have

b - DT> -] 2
Cov (A,A )=(x x) a

Finally, for ¥ at any b we have
g (¥ =y
and

G§=§'Cov R, 2 %

al e
=x (x x)*xo?

A-16
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APENDIX B

SAMPLE LEAST SQUARES CALCULATION

B-1.

10

11

SUM

4 % Y X X, exi
872 7183.2 -5 =T L2 -405.9 +34.7
873 2241.8 -4 = 312,08 3247 +12.1
874 2305.5 -3 -248.9  -243.5 =58
875 2377.1 -2 -177.3  -162.3 -15.0
876 2451.6 -1 - 102.8 - 81.2 - 21.6
877 2533.8 0 - 20.6 0.0 -20.6
878 2619.6 1 65.2 81.2 - 16.0
879 2707.7 2 153.3 ., 162.4 - 9.1
880 2799.6 3 245.2 243.6 + 1.6
881 2891.6 4 T2 324.8 12,4
882 2987.3 5 432.9 406.0 +26.9
0 0.4 0.4 0.0
28098.8
= ik =
x='52xi=2554.44 X; =X, =X
It, =0 Ix;=0.4
It =110 It ;x,;=8,931.2

STRAIGHT LINE REGRESSION FOR SAMPLE I

n=11

in2=728,868.12

A“=110 A1x=8,93l.2
Axx=728 ,868.11




Aee=3719.62

- - 2 - N [ . -
A =0.04 A =81.19 S e=Agn/P-2F413.29 -5,=20.33

f(t)=a°+ a1t=0.04+81.19t

B-2. QUADRATIC REGRESSION FOR SAMPLE II

L5t it % & exi
-5 25 - 371.2 -375.1 +3.9
- 4 16 -312.6 —-312.4 -0.2
-3 9 - 248.9 — 245.6 = 3.3
-2 4 -177.3 —~174.7 — 2.6
-1 1 - 102.8 =897 - 3.1
0 0 - 20.6 — 20.5 = 0]
1 1 65.2 +62.7 + 2.5
2 4 153.3 +150.1 £ 8l
3 9 2452 +241.6 + 3.6
4 16 337.2 +337.1 + 0.1
5 25 432.9 +436.8 - 3.9
SUM 0 110 0.4 0.3 0.1
n=11 st ;=0 st ;=110 1X,=0.4
:t112=110 Tt ;e ;=0 it ;X;=8,931.2
'zt212=1958 st ,X,;=1769.2

=X, 2=728,868.12

B=2



A =110 A =0
1.3 12

A =858
2%

A =858

25122

| as=-20.53 a1=81.19 a2=2.057

X(t)=-20.53+81.19t+2.057t2

B-3

A1x=8'931'2
A2x=l765.2

Axx=728,868.ll
A2'2x=l765.2

A =3719.62
XX

2,

Aee=87.999

2

S%e=Age/8=11.00

Se=3.32




B=3 CONFIDENCE INTERVALS FOR ESTIMATES

In Appendix A, it was shown that the
confidence intervals for x(t) at any time t had the form

(f(t)—cj(t)se,f+cj(t)se) j=1,2
where
- |/l g2
L A A2 = A =
C(t)= k= + 22— t£.2-2 [—=—2 )t (t -E)+(3——)(t 2 -t )2
z() 2f n g el <A11Az-zz> iG4E, l <A11Az-zz>( 2 2)

are the appropriate terms for the 1linear and quadratic
regression curves, respectively. For a 95% confidence level
and n-2 or n-3 degrees of freedom for the Student-T
distribution we find k =1.833 and k ,=1.860. Introducing the
numerical values determined in the preceding sections of this
appendix, we find

c (t)y=1.833 |/3- + &
. ' T * 179

" i £2 | (t?2-10)?
Cz(t)—l.860Vll - 115 + 858

The relationships of c, (%) and c, (&) and the increments Slecl(t)
and Szecz(t) are shown below using Sxe=20'33 and Sze=3'32‘

t Ci () S (8) Sie C1 (£) SeCe (k)
0 .553 .847 11.24 2.81
+ 1 .580 .820 11.79 2 T2
+ 2 .654 .765 13.30 2.54
+ 3 .762 .776 15.49 2.58
+ 4 .891 .981 18.11 3.26
+ 5 1.034 1.417 2102 4.70 '



L aiv BEaes L il VINENT RN e

The confidence interval for x(t) 1is shortest at
t=0 (the sample midpoint) for the linear regression. To find
the value of t in the quadratic regression for which the
confidence interval is shortest, consider

1 2 (t£2-10) 2
2211 * 110 * —@8ss8
now
dz _ 1, 2(t?-10) _,
de? T 110 858

220 t2=2200-858=1342
t2=6.10
t=2.47

Cz(2.47)=0.7535

B=5



$1eC1(8)
Linear

- 10
5
Szecz(t)
Quadratic
T ] T T T T ] =1 T o > C
=5 =4 -3 -2 -1 0 1 2 3 4 5

B=-6
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